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Abstract

Most previous image matting methods require a roughly-

specificed trimap as input, and estimate fractional alpha

values for all pixels that are in the unknown region of the

trimap. In this paper, we argue that directly estimating the

alpha matte from a coarse trimap is a major limitation of

previous methods, as this practice tries to address two dif-

ficult and inherently different problems at the same time:

identifying true blending pixels inside the trimap region,

and estimate accurate alpha values for them. We propose

AdaMatting, a new end-to-end matting framework that dis-

entangles this problem into two sub-tasks: trimap adapta-

tion and alpha estimation. Trimap adaptation is a pixel-

wise classification problem that infers the global structure

of the input image by identifying definite foreground, back-

ground, and semi-transparent image regions. Alpha esti-

mation is a regression problem that calculates the opac-

ity value of each blended pixel. Our method separately

handles these two sub-tasks within a single deep convolu-

tional neural network (CNN). Extensive experiments show

that AdaMatting has additional structure awareness and

trimap fault-tolerance. Our method achieves the state-of-

the-art performance on Adobe Composition-1k dataset both

qualitatively and quantitatively. It is also the current best-

performing method on the alphamatting.com online

evaluation for all commonly-used metrics.

1. Introduction

Image matting refers to the problem of accurately esti-

mating the foreground object opacity in images and video

sequences. It serves as a prerequisite for a broad set of

applications, including film production and digital image

editing. Formally, the input image I is modeled as a lin-

ear combination of the foreground and background colors
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Figure 1. (a) Input image, (b) Input trimap, (c) Our matting results,

(d) Corresponding trimap adaptation results. Row 1: the input

trimap (b) from low-quality user labelling contains errors. Row

2: the input trimap (b) is a failure case of the Graphcut algorithm

where all pixels are marked unknown. In both cases, the proposed

method can produce reliable alpha mattes.

as follows [10]:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1], (1)

where Fi, Bi and αi denote the foreground, background

color and alpha matte estimation at pixel i respectively.

Given an input image I , image matting aims to solve F ,

B, and α simultaneously. The problem is highly ill-posed,

as according to Eq. 1, for an RGB image, 7 values are to

be solved but only 3 values are known for each pixel. For

most existing matting algorithms, the essential input that

constrains the solution space is the trimap, a rough seg-

mentation indicating the opaque and unknown regions. The

trimap is generated either interactively by user scribbles, or

automatically from binary image segmentation results. In

either case, the input trimap is usually coarse, i.e., its un-

known region (the gray region in Fig. 1b) contains both

real semi-transparent pixels as well as a large amount of

opaque ones. This is because providing an accurate trimap

is tedious for manual labeling, and is difficult to achieve us-

ing existing image segmentation methods that run on low-

resolution images.

Unfortunately, previous image matting methods often ig-

nore the inaccuracy of the input trimap, and try to directly
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estimate a good alpha matte from it. We argue that there is

a classification problem that is not adequately addressed in

this process. If we take a closer look at the trimap, pixels

in the unknown region fall into three different sets: opaque

foreground, opaque background, and the semi-transparent

region. We call the first two types opaque pixels, and the

last type blended pixels. The desired behavior of an image

matting method is to produce exact 0s or 1s for the opaque

pixels, while accurately estimating the fractional opacity

(ranged between 0 and 1) for the blended pixels. From this

perspective, two related but inherently different tasks are

implied in image matting. The first is to classify pixels in

the unknown region to iden blended pixel, and we name this

task as trimap adaptation. The second is to accurately cal-

culate the opacity values for blended pixels, which we call

alpha estimation.

We observe that these two tasks demand quite different

abilities from the algorithm. Trimap adaptation relies more

on a good semantic understanding of the object shape and

structure, so that it could effectively identify foreground and

background regions in the unknown region based on image

features. For alpha estimation, careful low-level exploita-

tion of the photometric cues is more critical. Furthermore,

trimap adaptation can be modeled as a classification task,

and alpha estimation can be viewed as a typical regression

task. Most of the existing image matting methods consider

image matting as a single regression task, which ignores the

classification nature resided in image matting. This obser-

vation brings us the question of how to reconcile the two

very different aspects of the matting problem in one inte-

grated solution.

Furthermore, existing matting methods, especially

optimization-based ones, rely too much on low-level fea-

tures such as color distributions and local textures, and lack

the ability of incorporating high-level semantics. As shown

in recent works [38, 2], inducing better understanding to-

wards object shape and structure could help image mat-

ting. Although claiming to utilize high-level features, these

methods typically rely solely on pretrained features and do

not use explicit semantic objective as guidance. This is wit-

nessed by the incomplete object structure extracted by the

existing methods from areas where the background color is

similar to the foreground object.

Motivated by the new observation that image matting

should be disentangled into trimap adaptation and alpha es-

timation, we propose a simple yet powerful image matting

framework named AdaMatting (Adaptation and Matting),

which resolves the limitations discussed above at the same

time. AdaMatting performs trimap adaptation and alpha es-

timation within two distinct decoder branches in a multi-

tasking manner. By explicitly supervising the model to dis-

tinguish blended pixels from opaque ones, and then using

the refined trimap to afterwards constrain the alpha estima-

tion output, the two branches separately handles the two dif-

ferent aspects of the task. Furthermore, the understanding

towards object shape and structure information of the model

is greatly enhanced by sharing features from the two tasks.

See Fig. 2 for our detailed pipeline.

Our major contributions can be summarized as follows:

• We provide a new perspective that image matting

should be disentangled into two tasks, namely trimap

adaptation and alpha estimation, and demonstrate that

the disentanglement of the two tasks is essential for

improving performance of CNN-based image matting

models.

• Following the new perspective, we propose a novel

pipeline where trimap adaptation and alpha estimation

are jointly optimized in a multi-tasking manner. Exten-

sive experiments show that the proposed pipeline can

better use semantic information to provide additional

structural awareness and trimap fault-tolerance to the

trained CNN model.

• The proposed method refreshes the state-of-the-art

results on the most commonly used dataset Adobe

Composition-1k [38], and ranks 1st on alphamat-

ting.com [26].

2. Related Work

Natural Image Matting Natural image matting is es-

sentially the per-pixel opacity estimation of the foreground

region. The typical input to natural matting algorithms is

in the form of scribbles [33] or trimaps [10], which help

reduce the solution space of this ill-posed problem.

Existing traditional methods can be categorized into

color sampling based and alpha propagation based methods.

Color sampling based methods [10, 12, 16, 11] collect a set

of known foreground and background samples to find can-

didate colors for a given pixel’s foreground and background.

According to the local smoothness assumption on the image

statistics, these sampling colors are supposed to be “close”

to the true foreground and background colors. Once the

foreground color and background color are determined, we

can calculate the corresponding alpha value base on Eq. 1.

Following this assumption, various sampling-based meth-

ods are proposed, including Bayesian matting [10], shared

sampling matting [12], global sampling matting [16], and

sparse coding matting [11].

Compared to sampling-based methods, propagation-

based approaches [31, 13, 7, 1, 21] avoid matte disconti-

nuities which sampling-based approaches may suffer from.

These methods utilize the affinities of neighboring pixels

to propagate alpha values from the known regions into

unknown ones. A popular approach among these is the

closed-form matting [21], which finds globally optimal al-

pha matte by solving a sparse linear system of equations.
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Other propagation-based approaches include Poisson mat-

ting [31], random walk matting [13], KNN matting [7] and

information-flow matting [1].

Recently, deep learning has shown impressive perfor-

mance on various computer vision tasks including image

matting. Cho et al. [9] proposed an end-to-end architec-

ture named DCNN that utilizes the results of closed-form

matting [21] and KNN matting [7] to predict better alpha

mattes. Shen et al. [29] proposed a fully automatic mat-

ting system for portrait photos based on end-to-end CNNs.

Lutz et al. utilized [23] the power of adversarial learning to

extract alpha mattes which led to visually pleasing compo-

sitions. Wang et al. [35] showed a semantic-level pairwise

similarity for propagation based matting can be learned via

deep learning mechanism.

Trimap Generation To the best of our knowledge, there

are no existing work for trimap adaptation (i.e. generat-

ing the accurate optimal trimaps). The most related topic is

automatic trimap generation. Automatic trimap generation

has been an important part for traditional matting methods.

Wang et al. [34] used depth information acquired by a time-

of-flight range scanner to obtain trimap. Some other algo-

rithms [8, 18] rely on the binary segmentation to obtain the

coarse trimaps. [30] used the RGB image feature maps to-

gether with morphological dilation to automatically gener-

ate trimap, and refined trimap using region growing mech-

anism. [3] first introduced the Gestalt laws to the matting

problem, making more robust trimap generation possible.

More recently, [6, 29] utilized neural networks to generate

trimaps, greatly improving the matting performances.

Multi-task Learning Multi-task learning is a sub-field

of machine learning, in which multiple learning tasks are

solved within a single model simultaneously. Compared

with training separate models for each task, multi-task

learning improves learning efficiency and prediction accu-

racy for each task by utilizing their inter-relation. In com-

puter vision, there are various exemplars of using multi-task

learning, e.g. joint object detection and semantic segmen-

tation [15], simultaneous depth estimation and scene pars-

ing [37], and universal network for handle low, middle and

high-level vision tasks [20]. Recently, Kendall et al. [19]

proposed a general way of combining multiple loss func-

tions to simultaneously learn multiple objectives using ho-

moscedastic task uncertainty. By dynamically adjusting the

weights for each objective, their model could obtain supe-

rior performance compared to separately trained models.

3. Method
According to the disentangled view of image matting

aforementioned, two related but subtly different tasks are

implied in image matting, namely the trimap adaptation,

a classification task, and the alpha estimation, a regres-

sion task. We propose a novel pipeline for image matting,

in which the two sub-tasks are solved simultaneously in a

multi-task learning manner, and then the final mattes are

propagated based on the results of the sub-tasks.

In this section, we first formulate the task of trimap adap-

tation, and then describe the pipeline and training schemes

of our proposed AdaMatting (Adaptation and Matting).

3.1. Trimap Adaptation

We begin by formally defining the task of trimap adap-

tation. Let αgt be the ground truth alpha mattes. The corre-

sponding optimal trimap Topt of an image can be naturally

defined as:

Topt(x, y) =











background if αgt(x, y) = 0,

unknown if 0 < αgt(x, y) < 1,

foreground if αgt(x, y) = 1,

(2)

where (x, y) stands for each pixel location on the image.

Given an input image conditioned with a trimap (which

could be coarse), the trimap adaptation aims to predict the

optimal trimap Topt. Intuitively, in trimap adaptation, we

separate the semitransparent regions from the opaque fore-

ground and background. This is reminiscent of the semantic

segmentation task which also divides the image into dis-

crete parts. From the Topt defined above, the image matting

task naturally factors into two steps: (1) deciding if the al-

pha should be exactly zero, one or neither, (2) computing

the exact alpha if the region is considered semitransparent.

Note that we do not require the predicted label to be strictly

compatible with the input trimap: if the user input contains

minor error, we would like our model to correct it.

There are several reasons why separating trimap adap-

tation and alpha estimation is helpful. First, the two tasks

require different training strategies and mode-of-operation

of the model. Also, the classification task and the regres-

sion task usually desire different loss objectives. Therefore,

on one hand, separating the two tasks relieves the burden

of the regressor to generate exact zero or one values for the

opaque pixels to a great extent. On the other hand, when the

exact fractional value of α is hidden, the semantic and struc-

tural information of the object is expected to be more emi-

nent for the classifier to exploit. Second, our final results are

propagated using the predicted T̃ instead of the coarse input

trimap, making our model more robust and fault-tolerant to

the coarse input trimap.

Fig. 1 (d) shows examples of trimap adaptation per-

formed by our model. As can be observed, the unknown

region in the first input trimap is wide and erroneous, not

covering all of the hair due to low-quality labeling. After

performing trimap adaptation, the output trimap is not only

narrowed but also corrected, resulting in more credible al-

pha mattes. For the second input image (“cobweb” of the

Adobe Composition-1k testing set), the automatic trimap

generation algorithm (Graphcut [14] based) fails to provide

a meaningful trimap. However, the proposed AdaMatting
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Figure 2. Pipeline of the proposed AdaMatting. T-Decoder and A-Decoder stand for trimap decoder and alpha decoder, respectively.

Symmetric shortcuts are linked to different levels of layer for the two decoders.

can surprisingly adapt a rather precise trimap under this ex-

treme condition, thus perfectly solves this hard case of im-

age matting.

3.2. Network Overview
As mentioned above, the trimap adaptation requires

more semantic understanding of the object shape and struc-

ture, and the image matting relies more on careful low-

level exploitation of the photometric cues. Solving these

two tasks simultaneously, while sharing intermediate rep-

resentations, can reasonably enhance the performance of

the entire model. Hence we designed a fully end-to-end

CNN model named AdaMatting. Fig. 2 depicts the pipeline

of AdaMatting, which consists of one encoder produc-

ing shared representations, followed by two dependent de-

coders, solving trimap adaptation and alpha estimation re-

spectively. The result of trimap adaptation and the inter-

mediate alpha matte are then sent into the propagation unit,

forming the final alpha matte.

The proposed AdaMatting takes an image concatenated

with the corresponding trimap as input. First, a front-

end fully convolutional encoder (adopted from the ResNet-

50 [17]) produces deep features as shared representations.

Then two separate decoders are employed for each task,

aiming to learn mappings from the shared representations to

the desired output. Each decoder consists of several 3 × 3

convolutional layers and up-sampling modules. The trimap

decoder outputs 3-channel classification logits, guided by

the cross-entropy loss. The alpha decoder outputs a 1-

channel intermediate alpha estimation, which is forwarded

into the propagation unit for further refinement.

Detailed network architecture is depicted in Fig. 2. Here

we explain the major modules of our model:

Multi-task Autoencoder The primary module of our

pipeline is the multi-task autoencoder, designed based on

the widely used U-Net architecture, as it has achieved a

great success for numerous computer vision tasks [27, 39,

40]. According to the observation that the trimap adapta-

tion relies more on high-level features and the the alpha

Step 1 Step 2 Step 3

Figure 3. Visualization of the propagated intermediate alpha mat-

tes. Artifacts are gradually removed and the hair progressively

becomes clearer and more distinguishable.

estimation relies more on low-level ones, the symmetric

shortcuts are linked between different levels of layer for

the two decoder. More specifically, the trimap decoder em-

ploys deep and middle layer symmetric shortcuts, and the

alpha decoder employs middle and shallow layer symmet-

ric shortcuts. Also, recent works [25, 41] show that the

size of effective receptive field plays an important role on

segmentation tasks. To further enlarge the receptive field

while keeping acceptable computational costs, global con-

volutions [25] are employed on the shortcuts. This modi-

fication further enlarges the receptive field, contributing to

more reliable and locally consistent results.

Propagation Unit Inspired by the widely used

propagation-based approaches [31, 13, 7, 1, 21], we de-

signed a propagation unit empowered by recent advance

of the convolutional long short term memory (LSTM) net-

works [36]. As shown in our pipeline in Fig. 2, the unit

is composed of two ResBlocks [17] and a convolutional

LSTM cell. In each recurrent iteration, the input image, the

adapted trimap, and the previous alpha matte propagation

result are taken as input. The ResBlocks extract features

from the inputs, while the convolutional LSTM cell keeps

memory between the propagation steps.

Similar to the traditional propagation based methods, the

propagation unit progressively refines predicted alpha mat-

tes, yielding final results with more accurate edge details
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and significantly less undesired artifacts. Fig. 3 illustrates

an examples of how alpha matte is refined within the de-

signed propagation unit. As can be seen, the hair progres-

sively becomes more clearly distinguishable. Also, the blur-

ring artifacts are eliminated within the propagation process.

3.3. Multi­task Loss

Multi-task learning aims to solve multiple tasks within

one model, while achieving superior efficiency and perfor-

mance compared to separately trained models. It can be

considered as an approach to induce knowledge transfer

by sharing the domain information between complementary

tasks [32, 19]. From an implementation aspect, by utiliz-

ing shared representations and designed objectives, multiple

tasks are capable of learning from each other in an effective

and efficient way.

Specifically in the AdaMatting, the two tasks are trimap

adaptation and alpha estimation. Trimap adaptation, as

mentioned above, can be modelled as a segmentation task,

splitting the input images into solid foreground, solid back-

ground, and semitransparent regions. The process of solv-

ing such kind of segmentation problem could lead to rich

semantic features, which help solve the alpha matte regres-

sion in return.

Instead of a linearly combined loss, we adopt the task

uncertainty loss [19]. Our loss can be formulated as:

L({T̃ , α̃}, {Topt, αgt}) =
1

2σ2

1

LT (T̃ , Topt)

+
1

σ2

Lα({T̃ , α̃}, αgt) + log 2σ1σ2,

(3)

where T̃ and α̃ stand for the output of trimap adaptation and

alpha estimation, σ1 and σ2 stand for dynamically adjusted

task weights, LT and Lα stand for trimap adaptation loss

and alpha estimation loss, respectively. More specifically,

LT is the cross-entropy loss, and Lα is the L1 loss, calcu-

lated on the unknown regions of T̃ (denote as T̃u) only:

Lα({T̃ , α̃}, αgt) =
1

|T̃u|

∑

s∈T̃u

|α̃(s)− αgt(s)|, (4)

where |T̃u| is the number of pixels in T̃u. The loss actually

disentangles the image matting into two parts, as described

in Section 3.1, assuring each decoder to learn structural se-

mantics and photometric information respectively.

Note that the trade-off parameter of the two tasks are

dynamically adjusted during training time by the back-

propagation algorithm, which avoids the expensive and

cumbersome searching process for the optimal weights.

4. Experiments

We conduct extensive experiments and demonstrate the

efficacy of our methods on two public datasets: (1) al-

phamatting.com [26] and (2) Adobe Composition-1k [38]

test set. The latter one has a wider range of object types

and more complicated background scenes. In this section,

we compare our complete AdaMatting with current state-

of-the-art methods both quantitatively and qualitatively.

4.1. Experiment Settings

Datasets The first dataset, alphamatting.com [26], is a

well-known online evaluation benchmark for natural image

matting methods. It includes 27 training images and 8 test-

ing images with 3 different kind of trimaps, namely,“small”,

“large” and “user”, representing different input trimap qual-

ities. The second dataset is the Composition-1k [38], which

provided 431 foreground images as well as their ground

truth alpha mattes. 100 background images from COCO [4]

are selected for each foreground. We completely followed

the composition order used by [38] while using the dataset.

Evaluation Metrics We use four quantitative metrics for

matting evaluation. Namely the sum of absolute differences

(SAD), mean square error (MSE) and the gradient error

(Grad). Empirical studies show that Grad is better suited

for perceptual comparisons of matting methods [26].

Implementation Details Inspired by [5], we use the

“poly” learning rate policy where current learning rate is de-

fined as the base learning rate multiplied by (1− iter
max iter

)p.

The base learning rate and p is set to 0.0001 and 0.9 respec-

tively. The Adam optimizer is used, with momentum and

weight decay set to 0.9 and 0.0001 respectively. The σ1 and

σ2 are both initialized to 4 in the multi-task loss.

For all experiments, we train for 120 epochs with a

batch-size of 16. The training patches sized 800 × 800 to

320× 320 along the unknown regions in the trimap are ran-

domly cropped and then resized to 320 × 320 patches, as

training with larger patches could introduce more semantic

information. The training trimaps are generated from the

ground truth alpha mattes using the random erode and dilate

technique [38]. For data augmentation, we adopt random

flip and random resize between 0.75 and 1.5 for all images,

and additionally add random rotation between -45 and 45

degrees. Due to the difference between classification and

image matting task, the model weights are not initialized

by ImageNet pre-training as in [38, 23]. The training data

are randomly shuffled in each epoch. The training process

takes about 2 days with eight NVIDIA TITAN X GPUs for

each experiment. During inference, the full-resolution input

images and corresponding trimaps are concatenated as the

4-channel input and fed into the network. The propagation

unit recurs for 3 times.

4.2. Results on alphamatting.com

We submitted our result to the alphamatting.com [26].

The AdaMatting achieves state-of-the-art performance,

ranking the first for the average performance on all three

metrics. The gradient error and the MSE results are shown
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Table 1. Average ranking results of our methods and 5 representative state-of-the-art techniques on the alphamatting.com dataset [26]. Best

results are shown in bold. S, L, U stand for different type of input trimaps. See alphamatting.com for details.

Methods Gradient Error MSE SAD

Overall S L U Overall S L U Overall S L U

AdaMatting (ours) 5.2 2.8 2.8 10 5.3 3.8 4.8 7.5 4.6 3.9 3.8 6.1

SampleNet Matting 6.2 3.1 3.3 12.1 6.4 4 6.4 8.9 5.3 3.9 4.5 7.4

AlphaGAN [24] 13.2 12 10.8 16.8 14.3 14.8 15.1 13.1 11.2 12 11 10.6

DCNN [9] 14.6 17.9 14.4 11.6 10 11.6 7.9 10.5 10.5 12.5 8.6 10.4

DIM [38] 14.3 10.8 11 21 9.3 8 8 11.9 7.1 8.3 6.1 6.9

IF [1] 16.4 19.5 14.1 15.1 10 12.5 9 8.6 8.8 9.9 8.9 7.5

Troll TLGM [22] IF [1] DIM [38] AlphaGAN [23] Ours

Figure 4. Qualitative comparisons on two images of alphamatting.com test set. [26] The figure shows the alpha predictions of the test

image “troll” with trimap “user”.

in Tab. 1.

Several visual comparisons are shown in Fig. 4. As can

be seen from the figure, our results contain much more de-

tails compared to other state-of-the-arts. Specifically, for

the “Troll” test image in the first row, we produce sharper

details with less artifacts compared to other models.

4.3. Results on Composition­1k

For the Composition-1k test set, we evaluate 6 recent

state-of-the-art methods, namely Closed Form [21], KNN

[7], DCNN [9], Information Flow [1], AlphaGAN [24], and

Deep Image Matting [38]. The quantitative results under

the Grad, SAD and MSE are shown in Table 2. Obviously,

our model outperforms all other methods on all metrics by

a large margin.

As random backgrounds are selected to combine with

each foreground object in the dataset, many images do not

seem natural or realistic. Moreover, some particularly dif-

ficult images are presented in the data set, in which the

foreground color is hard to be distinguished from the back-

ground. Two examples are shown in Fig. 5. It can be ob-

viously seen that our results contain more vivid details and

significantly less artifacts, compared to all other methods.

5. Discussions

From the comparisons to state-of-the-art image matting

models, it is obvious that our AdaMatting achieves supe-

rior performance both quantitatively and qualitatively. In

this section, we conduct more experiments to further ana-

lyze the effectiveness of each designed technique, as well as

measuring our performance on unseen real-world images.

Table 2. Quantitative comparisons on the Composition-1k test set

with other state-of-the-arts. The gradient loss is scaled by 10
3.

-PU stands for removing the Propagation Unit.

Methods Grad SAD MSE

CF [21] 126.9 168.1 0.091

KNN [7] 124.1 175.4 0.103

DCNN [9] 115.1 161.4 0.087

IF [1] 38.0 52.4 0.030

AlphaGAN [24] - - 0.031

DIM [29] 30.0 50.4 0.014

Ours (-PU) 17.9 44.1 0.011

Ours 16.8 41.7 0.010

5.1. Comparison to the Two­Stage Method

Rather than training a single network in the multi-tasking

manner, a more intuitive method is utilizing two cascaded

networks, solving trimap adaptation and then image matting

sequentially. We call such model Seq-AdaMatting, which

does not share intermediate representations between the two

tasks.

For fair comparisons, all components including sub-

pixel convolutions, global convolutions, propagation unit

and multi-task loss are employed for both models. The

quantitative results on Adobe Composition-1k is listed in

Table. 3. It can be seen from the table that the original

AdaMatting which utilizes the shared representations sig-

nificantly outperforms the sequential version on all three

metrics, despite the fact that the Seq-AdaMatting has much

more parameters than the AdaMatting (since the Seq-

AdaMatting have two different encoders). These results fur-
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Input Image Trimap Closed Form[21] KNN[7] DCNN[9]

SM[12] Information Flow[1] DIM[38] Ours Ground Truth

Input Image Trimap Closed Form[21] KNN[7] DCNN[9]

SM[12] Information Flow[1] DIM[38] Ours Ground Truth

Figure 5. Qualitative comparisons on the Adobe Composition-1k test set.

ther prove that using shared representations, which contain

rich semantic information learned from trimap adaptation,

could effectively help to extract better alpha mattes.

Table 3. Quantitative comparisons to the two-stage sequential

method. The gradient loss is scaled by 10
3.

Method Grad SAD MSE

AdaMatting - w/o PU 17.93 44.10 0.0114

Seq-AdaMatting 23.97 46.36 0.0129

5.2. Accuracy of Trimap Adaptation

We have provided visualization examples of adapted

trimap in paper and supp. For quantitative results, please

refer to Tab. 4.

5.3. Effectiveness of the Structural Semantics

To further prove the effectiveness of leading in structural

semantics, we designed an experiment to compare our pro-

posed AdaMatting (with multi-task loss and shared repre-

sentations) with those trained without the help of semantic

information. The first is the model trained only with the al-

pha estimation loss Lα (i.e. σ = 1.0 in Eq. 5), not involving

Table 4. Perf. of trimap adaptation (Acc, mIoU) and image matting

(Grad) on Adobe’s testset[38]. “D-n”: Using n-dilation of GT

alpha as input trimap. “Adobe”: Using testset trimap as input.

Method / Trimap Type Acc (%) mIoU Grad

CSS Matting [28] / D-100 84.9 59.0 480.99

CSS Matting [28] / D-10 92.3 77.8 129.8

CSS Matting [28] / Adobe 90.3 77.2 116.27

AdaMatting / D-100 94.7 80.7 17.68

AdaMatting / D-10 96.7 84.2 17.06

AdaMatting / Adobe 96.5 83.6 16.89

high-level semantics learned from trimap adaptation. The

second is the two-stage method mentioned in Section 5.1,

which does not share representations between the two tasks.

Thus the alpha estimation step is not guided by the semantic

features from trimap adaptation as well.

We take a closer look to the second image in Fig. 5,

since the ball is highly structured, contains sophisticated

patterns on a large scale. Furthermore, the color resem-

blance between the foreground and background add to the

overall difficulty for image matting. Thus solving this im-

age would definitely need the global perception to the ob-

ject shape and structure. The alpha matte results of the three

models are shown in Fig. 7. It can be obviously seen that

with the structural semantics learned from trimap adapta-
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Input Image Input Trimap IF [1] DIM [38] Ours [23] Our Adapted Trimap

Figure 6. Evaluation results on a real-world image. The input trimap is generated by portrait segmentation followed by boundary eroding.

Input Image AdaMatting with Lα Only

Seq-AdaMatting Proposed AdaMatting

Figure 7. Comparisons of our model trained with and without

structural semantic features from trimap adaptation. Obviously

the one with these features (the last alpha mattes) could capture

the overall structure, and yield a more accurate result.

tion, the proposed model could precisely capture the overall

shape of the foreground object, leading to accurate matting

results without loss of details. The other models without

high-level features fail to perceive the global structure of

the object, resulting in deficiencies in the alpha mattes.

5.4. Analysis on the Multi­Task Loss

To further analysis the impact of the multi-task loss. We

carry out experiments on the Adobe Composition-1k testset,

comparing two kinds of losses: the deployed dynamically

weighted loss (Eq. 3) and naive linearly combined loss:

Lnaive = (1− σ)LT + σLα, (5)

where σ stands for a pre-defined fixed weight.

Note that in the extreme case of σ = 1.0, the method

degenerates to the one step regression of alpha used by pre-

vious work[38, 9]. We train the AdaMatting under same

settings except for the loss function. The resulted model

performance with respect to weight σ is shown in Fig. 8.

It can be observed that σ = 1.0 leads to significantly in-

ferior performance, which verifies the importance of solv-

ing trimap adaptation explicitly. Properly adjusting the

weight between the classification branch and the regression

branch improves performance. However, the dynamically

weighted loss leads to markedly better results compared to

all other losses.
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Figure 8. Results on the Adobe Composition-1k test set with dif-

ferent weighted loss functions. The dotted line below represents

the result with dynamically weighted loss, and the poly lines above

represent the result with linearly combined fixed-weight loss.

5.5. Real­World Image Matting

Because of the additional robustness provided by trimap

adaptation, our model could generate accurate alpha mattes

even when the input trimaps contain minor errors. The ro-

bustness is particularly useful when performing real-world

image matting. One of the results is shown in Fig. 6. As

observed, our AdaMatting produces much more meticulous

details compared to other methods. Furthermore, because

of the task of trimap adaptation, our model is capable of

correcting the input trimaps, yielding accurate alpha values

even at the improperly labelled regions.

6. Conclusions

In this paper, we proposed a disentangled view of image

matting, where the task can be divided into two sub-tasks:

trimap adaptation and alpha estimation. From this point of

view, the AdaMatting is proposed to solve both sub-tasks

jointly utilizing the multi-task loss. By explicitly separating

the two sub-tasks and optimizing them according to differ-

ent objectives, the model can greatly benefit from the shared

representations, which contains both rich semantic and pho-

tometric information. Extensive experiments demonstrate

additional structural awareness and trimap fault-tolerance of

the AdaMatting. Furthermore, the proposed method shows

superior performance on two widely used datasets, both

qualitatively and quantitatively, establishing a new state-of-

the-art for image matting.
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